Redis4.0的大key发现和删除

Redis4.0版本之后引入了memory usage命令和lazyfree机制。不管是对大key的发现,还是解决删除大key造成的阻塞问题都有了很大的提升。

大key发现

memory usage的实现主要在object.c->memoryCommand方法中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
{"memory",memoryCommand,-2,
"random read-only",
0,NULL,0,0,0,0,0,0},

else if (!strcasecmp(c->argv[1]->ptr,"usage") && c->argc >= 3) {
dictEntry *de;
long long samples = OBJ_COMPUTE_SIZE_DEF_SAMPLES;
for (int j = 3; j < c->argc; j++) {
if (!strcasecmp(c->argv[j]->ptr,"samples") &&
j+1 < c->argc)
{
if (getLongLongFromObjectOrReply(c,c->argv[j+1],&samples,NULL)
== C_ERR) return;
if (samples < 0) {
addReply(c,shared.syntaxerr);
return;
}
if (samples == 0) samples = LLONG_MAX;;
j++; /* skip option argument. */
} else {
addReply(c,shared.syntaxerr);
return;
}
}
if ((de = dictFind(c->db->dict,c->argv[2]->ptr)) == NULL) {
addReplyNull(c);
return;
}
size_t usage = objectComputeSize(dictGetVal(de),samples);
usage += sdsAllocSize(dictGetKey(de));
usage += sizeof(dictEntry);
addReplyLongLong(c,usage);
}

我们可以看到计算使用内存大小核心逻辑是在objectComputeSize函数中,对不同类型的键值计算方式不一样,这里以hash类型举例。
在使用memory usage命令时可以指定一个抽样元素个数。默认为5,决定了内存计算的准确性和计算成本。
这个值越大,循环次数越多,计算结果越精准,性能损耗也越高

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/*...代码对数据类型进行了分类,此处只取hash类型说明*/
/*...*/
/*循环抽样个field,累加获取抽样样本内存值,默认抽样样本为5*/
while((de = dictNext(di)) != NULL && samples < sample_size) {
ele = dictGetKey(de);
ele2 = dictGetVal(de);
elesize += sdsAllocSize(ele) + sdsAllocSize(ele2);
elesize += sizeof(struct dictEntry);
samples++;
}
dictReleaseIterator(di);
/*根据上一步计算的抽样样本内存值除以样本量,再乘以总的filed个数计算总内存值*/
if (samples) asize += (double)elesize/samples*dictSize(d);
/*...*/
}

lazyfree

在Redis4.0版本中,新增了一个删除命令unlink。实现了懒删除方式,减少了在删除大key时引起的阻塞影响。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
{"unlink",unlinkCommand,-2,
"write fast @keyspace",
0,NULL,1,-1,1,0,0,0},



void unlinkCommand(client *c) {
delGenericCommand(c,1);
}

/* This command implements DEL and LAZYDEL. */
void delGenericCommand(client *c, int lazy) {
int numdel = 0, j;

for (j = 1; j < c->argc; j++) {
expireIfNeeded(c->db,c->argv[j]);
int deleted = lazy ? dbAsyncDelete(c->db,c->argv[j]) :
dbSyncDelete(c->db,c->argv[j]);
if (deleted) {
signalModifiedKey(c->db,c->argv[j]);
notifyKeyspaceEvent(NOTIFY_GENERIC,
"del",c->argv[j],c->db->id);
server.dirty++;
numdel++;
}
}
addReplyLongLong(c,numdel);
}

我们可以看出,delunlink命令调用的都是delGenericCommand方法。区别主要在于第二个参数,是否为懒删除标记。
如果是懒删除,调用的是异步删除方法dbAsyncDelete

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/* Delete a key, value, and associated expiration entry if any, from the DB.
* If there are enough allocations to free the value object may be put into
* a lazy free list instead of being freed synchronously. The lazy free list
* will be reclaimed in a different bio.c thread. */
#define LAZYFREE_THRESHOLD 64
int dbAsyncDelete(redisDb *db, robj *key) {
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);

/* If the value is composed of a few allocations, to free in a lazy way
* is actually just slower... So under a certain limit we just free
* the object synchronously. */
dictEntry *de = dictUnlink(db->dict,key->ptr);
if (de) {
robj *val = dictGetVal(de);
/*lazyfreeGetFreeEffort来获取val对象所包含的元素个数*/
size_t free_effort = lazyfreeGetFreeEffort(val);

/* If releasing the object is too much work, do it in the background
* by adding the object to the lazy free list.
* Note that if the object is shared, to reclaim it now it is not
* possible. This rarely happens, however sometimes the implementation
* of parts of the Redis core may call incrRefCount() to protect
* objects, and then call dbDelete(). In this case we'll fall
* through and reach the dictFreeUnlinkedEntry() call, that will be
* equivalent to just calling decrRefCount(). */
/* 对删除key进行判断,满足阈值条件时进行后台删除 */
if (free_effort > LAZYFREE_THRESHOLD && val->refcount == 1) {
atomicIncr(lazyfree_objects,1);
/*将删除对象放入BIO_LAZY_FREE后台线程任务队列*/
bioCreateBackgroundJob(BIO_LAZY_FREE,val,NULL,NULL);
/*将第一步获取到的val值设置为null*/
dictSetVal(db->dict,de,NULL);
}
}

/* Release the key-val pair, or just the key if we set the val
* field to NULL in order to lazy free it later. */
if (de) {
dictFreeUnlinkedEntry(db->dict,de);
if (server.cluster_enabled) slotToKeyDel(key);
return 1;
} else {
return 0;
}
}

从函数实现中可以看出,Redis并不是单纯的将所有懒删除操作都放后台线程中进行。而是会先对需要懒删除的key进行判断,不满足条件的key将会直接进行删除操作。
只有满足条件的key才放入到后台线程任务处理队列中。并且立即将其value设置为NULL,避免造成脏读。

1
2
3
4
5
6
7
8
9
10
11
12
else if (type == BIO_LAZY_FREE) {
/* What we free changes depending on what arguments are set:
* arg1 -> free the object at pointer.
* arg2 & arg3 -> free two dictionaries (a Redis DB).
* only arg3 -> free the skiplist. */
if (job->arg1)
lazyfreeFreeObjectFromBioThread(job->arg1);
else if (job->arg2 && job->arg3)
lazyfreeFreeDatabaseFromBioThread(job->arg2,job->arg3);
else if (job->arg3)
lazyfreeFreeSlotsMapFromBioThread(job->arg3);
}